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The two-dimensional stationary diffraction problem is considered. A fluid medium fills 
the lower half-plane in which acoustic effects are generated by a point type source loca- 
ted at a certain depth. The surface of the fluid is covered by two abutting semi-infinite 

plates. Mechanical properties of the two plates are assumed to be different. An exact 

mathematical solution of the problem is constructed for the case in which conditions at 
the plates abuttment are not fixed. This solution (which we shall call “general”) con- 
tains a certain number of arbitrary constants. The method for determination of these 

constants for specified conditions at the joint is indicated. A characteristic of the latter 
problem is that formal application of the boundary contact operators to the general solu- 

tion generates divergent integrals of expressions which increase algebraically at infinity. 
The analysis is carried out in certain abstract terms . The expressions of boundary, and 

boundary contact operators are not specified, hence these results are valid for the various 

methods used in plate theory approximations. The derived solutions may also be used for 

other boundary conditions (e.g. when one part of the fluid surface is left free, or covered 
by a membrane). 

1. Formulation of problem. A compressible fluid fills the lower half-plane 

(-- wcx<+ w,o<y<-tw). Two semi-infinite plates lie on the surface 
of the fluid (y = I)) extending respectively in the positive and negative directions of 

the x-axis (Fig. 1). The field generated in the described system by a point source of har- 
monic oscillations (at point x,,, 9,) is to be defined. Factor eeiw’ defining the depend- 

ence of processes on time will be everywhere omitted. 
We shall describe the acoustic processes in the fluid in terms of pressure P(x, y). 

The problem as stated consists of finding a solution of the inhomogeneous Helmholtz’ 

equationiiP+k2P=6(.r:--o, y-y,,) (-cx<z<+x,, ~<~<+so) (1.1) 

with boundary conditions 

L1P = 0 (z>O), LBP = 0 (z<O) (1.2) 
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Here 
i- m,,(-&)]P(.c, 0) (r= 1,2) (1.3) 

Operators m,, and m,, are polynomials of argument - 3. /3X2. 

Coefficients of these polynomials are expressed by the mechanical parameters of the 

problem, and generally speaking, depend mainly on the wave number k. It is assumed 
that the character of this dependence is subject to limitations given below [l]. 

Algebraic functions la(h) do not have real roots on the Riemann surface basic sheet 
of the complex variable 31 for Rek > 0, Imk > 0 

I, (h) = - v/h” - k2ma1 (h2) + m,, (h2) (1.4) 
Selection of the basic sheet for 1/ ha - ks ‘is made here and in the following in the 

manner that follows. From point h = k a branch cut is directed upwards (dotted line 

on Fig.2). The contour of this cut must 
not pass through the roots of l,(h), and 
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Fig. 1 Fig. 2 

is otherwise arbitrary. Branch cut through point h = - k is made downwards maintain- 

ing the drawing central symmetry with respect to the coordinate origin. It is assumed 
that on the basic sheet lim Re is 

v-h” - ks= + co for h +- + co 

On the complimentary sheet we have correspondingly 

limRol/h2--k?=-c= for h++oo 

A number of examples of specific values of operators L,is given in [l]. We shall men- 
tion only one of these pertaining to the most commonly used, viz. 

L, = &- !$j 
( 

$+g (x=1, 2) (1.5) 
5 

Here pL, is the plate surface density, D, the plate cylindrical stiffness, and p the fluid 
density. Relation (1.5) corresponds to the case in which the plate lying on fluid surface 
is capable of flexural deformations only obeying the Kirchhoff equation. It is assumed 

that pressure P (x, y) + o for -lfz2 + ys CO (Imk>O, Rek>O) 

is exponential. In this solution the case of real k is considered as the transition to the 
limit Jmk + + 0 (the principle of absorption limit). At the coordinate origin P(z, Y) 

is assumed to be continuous. 
A solution satisfying these requirements will be in accordance with [Z] called general. 
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Operators s,,, and c&s are polynomials of argument - id / dx. RI the foliowing 
(Sect, 4) a certain limitation will be imposed on the algebraic properties of functions 

r,s (3t) = -- $QF---- - K&S (q i- sq?& S) 11 .q 

We shc;hall adduce examples of boundary contact conditions when L,, is defined by relal 

tion (L5). (Here n = 4,) 
A. Am infinitely narrow fissure exist9 between the two plates [3] 

3, The plates are soldered together fir] 

C. The soldered joint of plates is reinforced by a stiffening rib [SJ. In this case rela- 
tions (1, IO) are fulfilled, while the more complicated expressions 

are substituted for (1. II), 
Expressions for impedence z,, and 2, are given in [5& 

a, ~~~~v~~~~~ of the gsnsral tolttrfon, We shan deri%Pz a solution saris- 
fying aS1. conditions of the problem, with the exception of the boundary contact condition, 

We write the expression for field P in the form of the sum of three terms 

P = P, -t_” PI* + P,” (2.1) 
Here P, represents the point source field of an infinite fluid medium 

Functions p,*(z, y) and P,*kr,y) are to be determined, We shall assume that they 
individually satisfy the homogeneous Helmhottz’ equation, and also the conditions of 
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continuity at the coordinate origin and of attenuation at infinity. We shall have these 

functions subject to boundary conditions as follows: 

L1 (P*l + PO) = 0 (5 > C)), L,P,” = 0 (2.7 < 11) (2.3) 

LlPt* = 0 (x > 0) Lz (Pz* + P,) = 0 (2 < 0) (24) 

It is obvious that with this all of the problem conditions will be fulfilled for the result- 

ant field, P . 
We shall first determine PI *. We shall look for P, * in the form of series expansion 

in the plane waves w 

PI* = -& 5 F1 (A) eikr- I/h’-k’udh 
(2.5) 

--co 
9; will then automatically satisfy the homogeneous Helmholtz’ equation, and has the 

required behavior when 1/ 52 + ya --f 00 with the appropriate p,(h) and the above- 

mentioned (Sect. 1) selection of the branch radical J/%X-G-_ 
We shall requfre pl(.h) to satisfy for h + 4: 00 the following estimate 

p1 (A) = 0 (1 / hl+E) (0 < E < ‘id (2.6) 

Condition (2.6) is sufficient for assuring the continuity of Pi (2, y) at the coordinate 

origin. 
Using boundary condition (2.3) and carrying formally out the differentiation under 

the integral sign, we derive the following integral equations : 

ll (a) p1 (J,,) _ 1; P”) I ~/h? _ k” e--iJsxr ‘fh’-k “41 @xdA = 0 (x > 0) (2.7) 
--co 

Here 

ai 

s, Es (h) p1 (h) ei%h @<O) (2.8) 

I,” (h) = v/h2 - k2m,, (3L2) + ma, (h2) (2.9, 
Values of 1, (h) of the basic sheet of the Riemann surface coincide with those of 

l,(k) on the second sheet. 
Sntegrals in the left sides of equalities (2. ‘7) and (2.9) will be generally divergent 

because the algebraic factors l,(h) may as the result of differentiation cause an increase 
of the integrand absolute value at infinity, An interpretation of similar divergent inte- 

grals is given in f2J. 
Equations (2. ‘7) and (2.8) are identically satisfied when the following relationships are 

fulfilled 
(2.10) 

in which functions @)1+ (al ) are analytical functions in the upper (lower) half-plane 

of the complex variable h. Their rate of growth in the two specified planes is assumed 
to be not greater than exponential. 

Eliminating pl@), we obtain the Riemann inhomogeneous boundary value problem 

[S-J. The problem condsts of finding two functions @: and @T analytical in upper and 
lower half-planes respectively from the linear relationship 

(2.11) 
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between the two futfilled along the real axis. 
We denote by n,the highest order derivative appearing in I&. We shall then have for 

l,(lt) at infinity the following estimate: 

L(h) = 0 (?3) (l~l-m) (2.12) 

We shall represent Z,(h) in the form of a product of two factors 1” (h) analytical in 

the upper and lower half-planes. respectively, 

E, (2%) = I,+ $1 E,- {X) (2.13) 

We shall assume that the following estimate 

1,* (h) = 0 (Pa) (lJ~l-+~) (2.14) 
holds for c?“(k} . 

The factorization method will be given in Sect 3, 
With the use of @,13) we may rewrite (2.11) in the form 

We introduce the piecewise-analytical function Ur, (A) 
M 

Ef (411° (4 & 

--co 
Ii+ {a) vss - Ice 

&‘X- V?=& 
t--h 

Its values in the upper and lower half-planes will be denoted by Y: and (Y; ). 
According to the formulas of Sokhotski the jump 

occurs at transition through the real axis, 
With (2.1’7) taken into account relation (2.15) may be presented in the form 

s ai- (A) + W;- (A) = 3) a,r+ (2~) + Yi+ (h) (Im L - 0) (2.18) 

According to the theorem of analytical continuation through the contour, the left and 
and right parts of equality (2.18f define a certain unique function H,(h) which is ana- 
lytical throughout the complex plane A. Because of its estimated exponential rate of 
increase at infinity this function will be a ‘polynomial the power of which we denote by 
?Z- 1 

F1 (A) = &% (A) (2.19) 

The f&owing expression of 
= ==%I 4-n, - G ~~/s~~r -!- “s - 4)) ~~*~~~ 

is readily obtained from (2.6). (2.X) and (2.13). 
Symbol E(g)denotes the whole part of number &The coefficients of polynolial q??,(h) 

are arbitrary, Their number must coincide with the number of linearly independent bound- 
ary contact conditions. 

As an illustration we adduce examples of determination of the number of boundary 
contact conditions from the order of boundary operators differentiais- 

1) Two plates lie on the surface of the fluid (flexural oscillations only are taken into 
consideration ; L1and La are defined by Formula (1.5) ) 

n, = 5, i)icI?; = 5, n=4 

2) The fluid surface is free (L% = If on one side of the coordinate origin, and covered 
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by a ptate on the other 
n, = 5, ??a = 0, n = 2 

3) A rigid boundary abuts on the plate (LP = 8 I 8~) 

r&1=5, r&2=1, n=2 

We revert to the solution of the problem. Taking into consideration (2.Q (2,10) and 
(2.19) we derive the following expression for P,*( C, y): 

Function ~~~~~ is defined by Formula (2. X6), and it is assumed that the int~gratlon 

contour passes above pole r = h. 
The problem is solved in a similar manner for P,*(&y) 

(2.22) 

(2.23) 

When deriving Y-Y+,(h) in(2.23)the pole z = h is bypassed from below. Combining 
the solution of these two problems we obtain the following final expression of P: 

P =Po-i- PI i-P,$_Q (2.24) 

(2.25) 

(2.26) 

The resection diffracted fields PI and p, satisfy the bounded conditions (2.3) and 
(2.4) and have at the coordinate origin cantinuous derivatives up to the ( n- l)th order. 

The diffracted field Q satisfies the homogeneous boundary conditions 

L,Q = 0 (X > ($, L,Q = 0 (z<il) (2.28) 

and carries in it discontinuities of derivatives of the total field p at the coordinate ori- 
gin. We note that the form of expression of Q (2.27) is independent of the character of 
rhe incident field P,. The same expression of Q may, incidentally, be derived e. g. with 
the construction of the plane wave diffraction problem 123. 

3. F~c~~rizati~~ of la CA). We shalf assume that the power of ~l~norn~~~ 
ma1 (A21 which shall be denoted by z;S, is not smaller than that of polynomial m,s (AZ). -_ 
Thus term VLz - kZ m,l (&2) defines the behavior of & (k} at infinity. and we have the 

following equality : ncT = 2+Q, 5 1 (3.l) 

The case of the even number ao; could be considered in a manner similar to that given 
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in the following. Our selection is related to that the situation defined by (3.1) is more 

realistic. If one disregards the case of the free surface (Lz = 1, n2 = 0) in which fac- 
torization is trivial (la* (h) = i), then in the usually applicable boundary conditions the 

order of the differential operators L, proves to be an odd number. 
Function I, (h) has on the two-sheet Riemann surface 4voc + 2 roots differing pairwise 

as to their signs. We denote these roots by + h,,, (v = 1, 2,..., 2v, -t 1) with the plus 
sign assigned to roots in the upper half-plane. Let us assume that there are N, pairs of 

roots 1, (A) on the basic sheet which we shall number from 1 to N,. 
Without loss of generality it may be assumed that the coefficient at the highest power 

of h in 112~~ (h2) is equal to unity. We introduce functions q’a (h) related to 1, (h) by 

1ms* 

b* 

the expression NZ 
\ 
\ Ia (k) = - ‘p, (h) (AZ- k+‘+ -Na n (h2 - hzy2) (3.2) 

\ IY Y=t 

Q 

r ‘\ Functions va (A) have no roots on the Riemann surface 

C=& 
I 

basic sheet, and tend to unity when IhI -, 30 . Hence on 

.‘c dK 
this sheet lncp, (h) can be uniquely defined on the basis 

-K . 

\ 

Ret 
of the requirement 

I 
lim In ‘p, (?i) = 0 

I).l+0Z 
(3.3) 

‘\ r: We represent lncp, (h) by the Cauchy integral 

r:’ ‘\ 1 

s 

ln ‘p, (r) 
\ ln ‘P, (V = 23 z-_h dt (3.4) 

c 
Fig. 3 

Here C is an arbitrary contour on the day sheet of 

plane z circumscribing point z = h in the positive direction (Fig. 3). By stretching this 

contour we can obtain the following expression: 

(pa (t) = (Pat (r) ‘Pa- (T) 1 

Here l?+ = r,’ -t lY+” - - are the contours enveloping the upper and lower branch cuts 
respectively in the 1 -plane. By virtue of (3.3) the integrals (3.5) are convergent. For 
the same reason the integrals taken along arcs connecting contours r+ and r vanish at 
the limit. 

Functions ‘pi and q, are analytical outside the contours along which they are defined 
by these integrals. Functiorrcpi (h) ’ 1s analytical outside the branch cut extending down- 
wards from point h = - k , and in particular in the upper half-plane. Similarly q,(h) 
is analytical outside the contour I?_. At infinity all these tend to unity. 

Integrals along contours r+ - may be reduced to integrals along one of the edges of the 
branch cut 

In ‘P,* (h) = & &n[-$+]S 
- 

(3.6) 

Here r; denotes the left-hand edge of the branch cut drawn from point ‘C = -k, and 
P_’ the right-hand edge of the branch cut at 7 = k. Both contours are traversed from 
points z = f.k towards infinity. Opposite edges of branch cuts are denoted by symbol 
r;. The branch of the integrand logarithm in (3.6) is selected so as to have 

(3.7) 
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Factorization of coefficients of cp, (h) in (3.2) is achieved in an elementary way. As 
the result we have 

z,-I‘ (X) = * (h f &)v,+“Z-N= z (A*&,) exp{& (3.3) 

-f=l 

Functions Ia0 (L) can be factorized in the same manner 

I,O (h) I= q+ (1) z,“-(h) (3.4) 

u=N,+1 
$n i-~~ *Ii3 1o) 

- 

We write down some of the relatio~hips useful in the various transformations of the 
solution obtained *in Sect. 2 

‘2v,+1 

I, (h) Z,‘(h) = - fl (h2-- a,,‘), I,- (_ a) ~_ ,“i cva -’ ‘2 Em- (A) 

Y==l 

sv,+t 
(3.11) 

I,& (h) [J- (h) = 3: j-J (h + &)’ 
/,a+ (_ h) = e:i(%r”?) I,+ (1) 

The first of these is obtained in an elementary way, while the remaining three follow 

from Formulas (3.8) and f 3.10). 
By virtue of the Sokhotski’s formulas it is also possible to obtain for the Cauchy type 

integrals in (3.8) and (3.10) the bypass relationsips for functions I$ (L) and E”,” (h) 

4. boundary Qontact conditiona. The direct application to field P of the 

boundary contact operators R,p results in the known difficulty in that it generally pro- 
duces divergent integrals of expressions which increase algebraically at infinity. It will 
be shown in the following how to express R,$ in terms of integrals convergent in the 
conventional sense. This will necessitate the introduction of certain limiting assumption 

as regards operators RR8 
We separate from P the incident wave PG and wave PO1 reflected from the right-hand 

plate, and readily obtain the expressions 

P = PO + Par -+ Qi (4.1) 

(4.2) 

(4.3) 

Here 
‘I+ (A) = c/+* (1.) - Yl” (7,“) --t- \rl?.t- (h) (4.4) 

represents a function which is analytical in the upper half-plane. 
The direct application of Iilg to P, and PO1 does not represent any difficulty, as the 

transition to limit g = 0, z -, + 0 there remains in the integrand the exponential fac- 
tor asp (-fha - iPgo) which ensures convergence of the integral. 

We now turn to R#&. We have 
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e0 ‘If? (A) PC (h) 
R,RQI=& s I~+ (a) I,- (a) &*’ 8. 

--tW 

The following notation is used here 
co co 

lim 
J-+&O 

f (X) eihr dh = 
s_ 

f (1) ekioA dJ, 

(4.5) 

(4.8) 

We shall distort (stretch) the integration contour into the upper half-plane until it 
reaches position r. With this the integrand poles lying in the roots of Z1- (a) will be 

Using the bypass relationships (3.12) we can substitute the integral along oneof the 
edges of the branch cut 

R,,#, i. -$- 2 Ras ‘1s @“) ‘+ (h) + 
Xm 2.>0 zzt (L) z1- (h) 

Here 

S 
r- 

for the integral along r_. 
We impose on R,e the following limitation: 

‘as (A) L’ (A) - F&* (h) I, (h) = 0 (P) ( I ?” I + -=I (4.10) 

In other words the rate of growth of function fl;ta (h) I’, (Q - raBo (A) I, (h)j at infi- 
nity is nor greater than /I, ($,)I. 

This limitation establishes a certain necessary link between the boundary contact 

operators R,b and the corresponding (i.e. pertaining to the same value of a) boundary 

operators La. The need for a relationship linking these operators is from the physical 
point of view quite natural. In any specific problem with a given L, there is only a very 
limited choice of acceptable values of &a. Relation (4.10) establishes only the simp- 

lest necessary (but not sufficient) limitation on the range of admissible values of R,$. 
A direct check will readily show that (4,lO) hold for all examples adduced in Sect. 1. 

Expression ~~3 (1) lo, (A) - ‘I80 ( 7L I ) i ( h) changes its sign when passing from the teft- 
hand side edge of branch cut (IL) to the right-hand one (I’_“). The remaining factors 
of the integrand (with (3.10) taken into consideration) remain unchanged when passing 
around point X = k. Hence the integral along r_ ’ in (4.8) is equal to half the integral 
along the complete loop I’_ of the same expression. We revert to the integration along 

the real axis, and finally obtain the expression 

(4.11) 
-cc 

In the first term summation extends along roots Z1 (h) and II0 (h) (see (3.11)) lying 
in the upper half-plane. 

By virtue of (4.10) the integral in (4.11) is absolutely convergent, hence the transition 
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to limit in (4.11) has been carried out and factor &-iah omitted. 
The transition to limit x + - 0 in &a P is analyzed in a similar manner. In this 

case field P is first converted to the form 

P = PO I- Pi,, + Qz 

1 ca s J2O (h) 
po2=== - 

_-03 l/AZ- k2b (h) 
,ih w-x+ )/).2--h.’ (u+ar,) & 

1 c0 
Q2=4, s (I- &I 

l2f (a) El- (h) 
px- %fne_lr2Q& 

-cc! 

It then appears that 

R,gQ2=-f 2 Res q_ (h) z2- (h) ‘28 (Q fz” (h) + r&cJ” m 12 (a) + 
Im h<0 4- (A) 12 (a) 12" (h) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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